Flood Forecasting Using Artificial Neural Networks in Black-Box and Conceptual Rainfall-Runoff Modelling
نویسنده
چکیده
The paper presents a comparison of lumped runoff modelling approaches, aimed at the realtime forecasting of flood events, based on or integrating Artificial Neural Networks (ANNs). ANNs are used in two ways: (a) as black-box type runoff simulation models or (b) for the real-time improvement of the discharge forecasts issued by a conceptual-type rainfall-runoff model. As far as the coupling of ANNs with a conceptual model is concerned, feed forward neural networks are used as univariate time-series analysis techniques both for forecasting the future rainfall values to be provided as input to the hydrological model and for updating the river discharges issued by the model. A real-world case study is developed on the Sieve River basin (Central Italy) and future river flows are first predicted using artificial neural networks as blackbox models, both with the only use of past flow observations and with the addition of exogenous inputs, that is previous rainfall depths. It is then applied the conceptual model and it is assessed the improvement allowed when integrating it with the ANN rainfall prediction and output updating modules. The results show that the ANN black-box model with exogenous input, when trained on a adequately representative data set, gives the best forecasting performances over the validation set. On the other hand, if the training set does not cover all the variety of events present in the validation set, for example if the major events are subtracted, the flood features were found to be better captured by the conceptual model coupled with pre and postprocessing ANN modules, thus demonstrating a greater generalisation ability of such approach.
منابع مشابه
Rainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding
In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...
متن کاملMonthly runoff forecasting by means of artificial neural networks (ANNs)
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
متن کاملFlood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملRiver Flow Forecasting Using Artificial Neural Networks
River flow forecasting is required to provide basic information on a wide range of problems related to the design and operation of river systems. The availability of extended records of rainfall and other climatic data, which could be used to obtain stream flow data, initiated the practice of rainfall-runoff modelling. While conceptual or physically-based models are of importance in the underst...
متن کاملNeural networks and non-parametric methods for improving real- time flood forecasting through conceptual hydrological models
Time-series analysis techniques for improving the real-time flood forecasts issued by a deterministic lumped rainfall-runoff model are presented. Such techniques are applied for forecasting the short-term future rainfall to be used as real-time input in a rainfall-runoff model and for updating the discharge predictions provided by the model. Along with traditional linear stochastic models, both...
متن کامل